An Overview of Modal-based Damage Identification Methods
نویسندگان
چکیده
This paper provides an overview of methods that examine changes in measured vibration response to detect, locate, and characterize damage in structural and mechanical systems. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is first provided. The methods are then categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. This overview is limited to methods that can be adapted to a wide range of structures (i.e., are not dependent on a particular assumed model form for the system such as beam-bending behavior and methods and that are not based on updating finite element models). Next, the methods are described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of modal-based damage identification.
منابع مشابه
An effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization
In this paper, a computationally simple approach for damage localization and quantification in beam-like structures is proposed. This method is based on using modal flexibility curvature (MFC) and particle swarm optimization (PSO) algorithm. Analytical studies in the literature have shown that changes in the modal flexibility curvature can be considered as a sensitive and suitable criterion for...
متن کاملDamage detection of structures using modal strain energy with Guyan reduction method
The subject of structural health monitoring and damage identification of structures at the earliest possible stage has been a noteworthy topic for researchers in the last years. Modal strain energy (MSE) based index is one of the efficient methods which are commonly used for detecting damage in structures. It is also more effective and economical to employ some methods for reducing the degrees ...
متن کاملSTRUCTURAL DAMAGE PROGNOSIS BY EVALUATING MODAL DATA ORTHOGONALITY USING CHAOTIC IMPERIALIST COMPETITIVE ALGORITHM
Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first severa...
متن کاملStructural Damage Identification of Plate Structures based on Frequency Response Function and Natural Frequencies
In this paper, a structural damage identification method (SDIM) is developed for plate-like structures. This method is derived using dynamic equation of undamaged/damaged plate, in which local change in flexural rigidity is characterized utilizing a damage distribution function. The SDIM requires to modal data in the intact state and frequency response of damage state where most of vibration ba...
متن کاملEFFICIENCY EVALUATION OF PROPOSED OBJECTIVE FUNCTIONS IN STRUCTURAL DAMAGE DETECTION BASED ON MODAL STRAIN ENERGY AND FLEXIBILITY APPROACHES
Civil infrastructures such as bridges and buildings are prone to damage as a result of natural disasters. To understand damages induced by these events, the structure needs to be monitored. The field of engineering focusing on the process of evaluating the location and the intensity of the damage to the structure is called Structural Health Monitoring (SHM). Early damage prognosis in structures...
متن کامل